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PAPER

Node-Disjoint Paths Algorithm in a Transposition Graph

Yasuto SUZUKI†, Nonmember, Keiichi KANEKO††a), and Mario NAKAMORI††, Members

SUMMARY In this paper, we give an algorithm for the node-to-set dis-
joint paths problem in a transposition graph. The algorithm is of polyno-
mial order of n for an n-transposition graph. It is based on recursion and
divided into two cases according to the distribution of destination nodes.
The maximum length of each path and the time complexity of the algo-
rithm are estimated theoretically to be O(n7) and 3n − 5, respectively, and
the average performance is evaluated based on computer experiments.
key words: interconnection networks, graph algorithms, transposition
graphs, node-to-set disjoint paths, parallel computing

1. Introduction

In practical use of parallel and distributed computing
systems, finding disjoint paths in interconnection net-
works is one of the fundamental issues [3], [5]–[7], [9]–[11].
Amongst them is the node-to-set disjoint paths problem:
Given a source node s and a set D = {d1, d2, · · · , dk} (s � D)
of k destination nodes in a k-connected graph G, find k paths
from s to di (1 ≤ i ≤ k) that are node-disjoint except for s.
Once these k paths are obtained, they achieve fault tolerance;
that is, at least one path can survive with k−1 faulty compo-
nents. This problem can be solved by using the maximum
flow technique, which takes polynomial time of the number
of nodes [4]. However, if graph G has many nodes, this ap-
proach is far from practical. For an n-hypercube, an n-star
graph and an n-rotator graph, the algorithms of polynomial
time of n for this problem have already been proposed [2],
[5], [10].

An n-transposition graph [8] is a Cayley graph [1]. It
is an n(n − 1)/2-connected undirected graph with n! nodes
and n(n − 1)n!/4 edges. Its diameter is n − 1. As an inter-
connection network, this graph attracts some attention be-
cause it can include other topologies as its subgraphs, such
as meshes, hypercubes, star graphs and bubble-sort graphs.
In addition, the fault diameter of an n-transposition graph
is n, and the graph has a wide container between any pair of
nodes with length of the distance of them plus two at most.

In this paper, we take an n-transposition graph as a tar-
get and propose an algorithm that solves the node-to-set dis-
joint paths problem in the time complexity of polynomial
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order of n instead of the number of nodes, n!.
The rest of this paper is organized as follows. Sec-

tion 2 introduces some preliminary definitions and a simple
routing algorithm. Section 3 explains our algorithm to ob-
tain node-to-set disjoint paths in detail. In Sect. 4, we give
a proof of validity of our algorithm and estimations of its
complexities. We conduct computer experiments in Sect. 5.
Section 6 describes the conclusion.

2. Preliminaries

In this section, we introduce definitions of the transposition
operation, transposition graphs, and the shortest-path rout-
ing algorithm in a transposition graph.

Definition 1: For an arbitrary permutation u = u1u2 · · ·un

of n symbols 1, 2, · · · , n, the transposition operation t(i, j)(u)
(1 ≤ i < j ≤ n) is defined as follows:

t(i, j)(u) = u1 · · · ui−1u jui+1 · · · u j−1uiu j+1 · · · un.

Definition 2: An n-transposition graph, Tn, has n! nodes.
Each node has a unique address which is a permutation of
n symbols 1, 2, · · · , n. A node which has an address u =
u1u2 · · · un is adjacent to n(n − 1)/2 nodes whose addresses
are elements of the set {t(i, j)(u) | 1 ≤ i < j ≤ n}.

In an n-transposition graph Tn, a subgraph induced by
nodes that have a common symbol k at the ith position of
their addresses constitutes an (n− 1)-transposition graph. In
this paper, we denote the subgraph induced by nodes whose
last symbols are k as Tn−1k. Figure 1 shows some examples
of transposition graphs.

For given nodes s = s1 s2 · · · sn and d = d1d2 · · ·dn

in Tn, we use the routing algorithm route shown in Fig. 2 to
obtain one of the shortest paths between s and d. We assume
that the address of a node is represented by using a linear ar-
ray and each element of the array consists of a word that can
store the value n. Then its time complexity is O(n2) and its
path length is O(n).

For an arbitrary node u, let N(u) denote the set of
neighbor nodes of u.

3. The Algorithm

In this section, we propose an algorithm for the node-to-set
disjoint paths problem in an n-transposition graph.
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Fig. 1 Examples of transposition graphs.

Fig. 2 A shortest-path routing algorithm route.

3.1 Classification

If n ≤ 2, the problem is trivial. That is, a 2-transposition
graph consists of two nodes and an edge between them.
Hence, if one node is the source, then the other one is the
destination, and the path is the edge itself. Therefore, we
assume n ≥ 3 in the following. We can fix the source node
as s = 12 · · ·n, taking advantage of the symmetric property
of Tn. Let D = {d1, d2, · · · , dn(n−1)/2} be the set of destina-
tion nodes. The algorithm has recursive structure. Here let
us consider the following two cases.

Case 1 |D \ V(Tn−1n)| ≤ n − 1
Case 2 |D \ V(Tn−1n)| ≥ n

where V(G) represents the node set of G, and |D \ V(Tn−1n)|
represents the number of destination nodes that are not in-
cluded in Tn−1n.

Fig. 3 Construction of node-disjoint paths from s to (n−1)(n−2)/2 nodes
in Tn−1n.

Fig. 4 Construction of paths to the nearest destinations.

3.2 Case 1: |D \ V(Tn−1n)| ≤ n − 1

This subsection presents the procedure in the case that
|D \ V(Tn−1n)| ≤ n − 1. Note that the number of destination
nodes that are included in Tn−1n is at least (n − 1)(n − 2)/2
in this case.

Step 1 In Tn−1n, by calling the algorithm recursively, con-
struct node-disjoint paths from s to (n − 1)(n − 2)/2
arbitrary destination nodes in Tn−1n.

Step 2 If a destination node, say dx, other than these
(n− 1)(n− 2)/2 destination nodes is on one of the con-
structed path from s to, say dy, then discard the subpath
from dx to dy and exchange the indices x and y. Repeat
this step until no destination node is on the paths except
for the (n − 1)(n − 2)/2 nodes. See Fig. 3.

Step 3 Select the edges (s, t(i,n)(s)) (1 ≤ i ≤ n − 1). Note
that t(i,n)(s) ∈ V(Tn−1i).

Step 4 For each Tn−1i (1 ≤ i ≤ n − 1), if there exist some
destination nodes in Tn−1i, choose one of the nearest
nodes among them from t(i,n)(s). Construct the shortest
path between these two nodes by route in Fig. 2. See
Fig. 4.

Step 5 For each Tn−1i (1 ≤ i ≤ n − 1), if there exists
no destination node, choose one of the destina-
tion nodes to which the path is not yet constructed
from s. Let the chosen node be dz. Select the edge
(N(dz) ∩ V(Tn−1i), dz) and construct the shortest path
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Fig. 5 Construction of paths to destinations to which any path is not yet
constructed from s.

from t(i,n)(s) to N(dz) ∩ V(Tn−1i) by route in Fig. 2.
See Fig. 5.

3.3 Case 2: |D \ V(Tn−1n)| ≥ n

This subsection presents the procedure in the case that
|D \ V(Tn−1n)| ≥ n.

Step 1 For each destination node di outside Tn−1n, select
two nodes ui and ci satisfying the following conditions
if possible.

• ci = di,
• ui = (N(ci) ∩ V(Tn−1n)) \ D,
• ui = s or ui � u j if i � j.

Step 2 For each destination node di outside Tn−1n, if ci for
di was not selected in Step 1, select two nodes ui and ci

satisfying the following conditions if possible.

• ci ∈ N(di) \ D,
• ui = (N(ci) ∩ V(Tn−1n)) \ D,
• ui = s or ui � u j if i � j,
• ci � c j if i � j.

Step 3 For each destination node di outside Tn−1n, if ci

for di was not selected in previous steps, select three
nodes ui, ci and bi satisfying the following conditions.
Figure 6 shows selection of these nodes.

• ci ∈ N(di) \ D,
• bi ∈ (N(ci) \ V(Tn−1n)) \ D,
• ui = (N(bi) ∩ V(Tn−1n)) \ D,
• ui = s or ui � u j if i � j,
• bi � b j if i � j,
• ci � c j if i � j,
• bi � c j for any i and j.

Step 4 Let M and U be a set {di | di � V(Tn−1n)} ∪
{ci | ci � di} ∪ {bi} and a set {ui}, respectively.

Step 5 Select the edges (s, t(i,n)(s)) (1 ≤ i ≤ n − 1). Note
that t(i,n)(s) ∈ V(Tn−1i).

Fig. 6 Selection of ui, ci and bi for each destination di.

Fig. 7 Construction of paths to the nearest destinations.

Step 6 For each Tn−1i (1 ≤ i ≤ n − 1), if there exist some
nodes in M ∩ V(Tn−1i) and a path from t(i,n)(s) is not
yet constructed, choose one node vi among the nodes
in M ∩V(Tn−1i) such that vi is one of the nearest nodes
from t(i,n)(s) in M ∩ V(Tn−1i).

Step 7 For each vi (1 ≤ i ≤ n − 1), if vi is a destination,
say, dx, construct the shortest path from t(i,n)(s) to dx by
route in Fig. 2, and update M and U by M\{bx, cx, dx}
and U \ {ux}, respectively. See Fig. 7. In this step, if
M is updated, go back to Step 6.

Step 8 For each vi (1 ≤ i ≤ n−1), if vi is one of ci’s, say cx,
construct the shortest path from t(i,n)(s) to cx by route
in Fig. 2 and select the edge (cx, dx) as shown in Fig. 8,
and update M and U by M \ {bx, cx, dx} and U \ {ux},
respectively. In this step, if M is updated, go back to
Step 6.

Step 9 For each vi (1 ≤ i ≤ n − 1), vi is one of bi’s, say bx.
Construct the shortest path from t(i,n)(s) to bx by route
in Fig. 2. Update M and U by M \ {bx, cx, dx} and
U \ {ux}, respectively.

Step 10 For each Tn−1i (1 ≤ i ≤ n − 1), if there exists no
node in M∩V(Tn−1i) and a path from t(i,n)(s) is not con-
structed, choose one destination node from M, say dx,
select the edge (N(dx) ∩ V(Tn−1i), dx), construct the
shortest path from t(i,n)(s) to N(dx)∩V(Tn−1i) by route
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Fig. 8 Construction of paths to the nearest ci’s.

Fig. 9 Construction of paths to destinations outside Tn−1n to which any
path is not yet constructed from s.

Fig. 10 Recursive application of the algorithm.

in Fig. 2 as shown in Fig. 9, and update M and U by
M \ {bx, cx, dx} and U \ {ux}.

Step 11 In Tn−1n, by calling the algorithm recursively,
construct node-disjoint paths from s to the nodes in
{di | di ∈ Tn−1n} ∪ U as shown in Fig. 10.

Step 12 For each ui in U, construct a path from ui to di

via bi and ci if any.

4. Proof of Validity and Estimation of Complexities

In this section, we give a proof of validity of our algorithm
and estimate the time complexity T (n) and the maximum
length of each path L(n) for an n-transposition graph. The
proof is based on the mathematical induction on n.

Lemma 1: Paths constructed by the procedure for Case 1
are node-disjoint. For this case, the maximum length of each
path is max{L(n − 1), n} and the time complexity of the pro-
cedure is T (n − 1) + L(n − 1) × O(n4).

Proof: In Steps 1 and 2, the obtained (n−1)(n−2)/2 paths
are node-disjoint except for s by the induction hypothesis.
The pair of the edges (s, t(i,n)(s)) and (s, t( j,n)(s)) selected in
Step 3 are node-disjoint except for s if i � j. The paths
in Tn−1i and Tn−1 j constructed in Step 4 are node-disjoint
because the selected destination node in each subgraph is the
one of the nearest nodes from t(i,n)(s) or t( j,n)(s). The paths
constructed in Step 5 are also node-disjoint. Concatenations
of all paths constructed in Steps 3 and 4 or Steps 3 and 5
are node-disjoint except for s. The (n − 1)(n − 2)/2 paths
obtained in Steps 1 and 2 are all inside Tn−1n and n−1 paths
obtained in Steps 3, 4 and 5 are all outside Tn−1n except
for s if |D \ V(Tn−1n)| = n − 1, or except for s and some
destinations otherwise. Hence, the n(n−1)/2 paths obtained
by the procedure are node-disjoint except for s.

The maximum lengths of Steps 1, 3, 4 and 5 are
L(n − 1), 1, n− 2 and n− 1, respectively. Hence, for Case 1,
we obtain L(n) = max{L(n − 1), n}.

The time complexities of Steps 1 and 2 are of T (n − 1)
and L(n − 1) × O(n4), respectively. Considering that dis-
tance between two nodes in Tn can be calculated in O(n)
time, the time complexities of Step 3, 4 and 5 are O(n),
O(n3), O(n3), respectively. From above, we obtain T (n) =
T (n − 1) + L(n − 1) × O(n4) for Case 1. �

Lemma 2: Paths constructed by the procedure for Case 2
are node-disjoint. The maximum length of each path is
max{L(n− 1)+ 3, n+ 1} and the time complexity of the pro-
cedure for Case 2 is T (n − 1) + O(n6).

Proof: In Tn, consider the destination node di � Tn−1n. Let
N0(di), N1(di), and N2(di) represent the sets of the nodes
whose distances from di are 0, 1, and 2, respectively. Then,
|N0(di)| = 1, |N1(di)| = n(n − 1)/2, and |N2(di)| = n(n − 1)
(n − 2)(3n − 1)/24. In addition, let Ñ0(di) (⊂ N0(di)),
Ñ1(di) (⊂ N1(di)), and Ñ2(di) (⊂ N2(di)) represent the
sets of the nodes of which the positions of n are same
as di. Then, |Ñ0(di)| = 1, |Ñ1(di)| = (n − 1)(n − 2)/2, and
|Ñ2(di)| = (n − 1)(n − 2)(n − 3)(3n − 4)/24.

For any two distinct nodes a, b (∈ Ñ0(di) ∪ Ñ1(di) ∪
Ñ2(di)), since the positions of n of a and b are same,
N(a) ∩ V(Tn−1n) and N(b) ∩ V(Tn−1n) are also distinct.
Hence, after Steps 1 and 2, at least (n − 1)(n− 2)/2 + 1 des-
tination nodes d j’s have their corresponding u j’s, and the
remaining destination nodes are at most n − 2.

Consider the case where a destination node di =
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(d1, d2, . . . , dn) is processed in Step 3. Assume that dh = n.
Then, for each node in N0(di) ∪ N1(di), the node itself is se-
lected as c j, or its neighbor node in Tn−1n is selected as u j

for another destination node. If there is an available node in
Ñ1(di), select it as ci. Then, n ≥ 4 implies that the number of
candidates for bi, |N(ci)∩N2(di)| = (n−1)(n−2)/2−1 ≥ n−2,
and that there are paths to distinct n − 2 nodes in Tn−1n.
If there is not any available node in Ñ1(di), then let ci be
the node that is obtained by exchanging the element dh = n
and the element dk where k � h, n. Let bi be the node ob-
tained by exchanging the element dk and the element dl

where l � h, k. There are n − 2 candidates for bi. Then,
the path di → ci → bi does not have any common node
with Ñ0(di) ∪ Ñ1(di), and the node in N(bi) ∩ V(Tn−1n) is
adjacent to the node in Ñ2(di). Hence, there are paths whose
terminal nodes are distinct n − 2 nodes in Tn−1n.

The above discussion ensures the existence of a path
from di to ui via ci and bi for each di of the n− 2 remaining
destination nodes in Step 3 of Case 2. That is, the algorithm
can always select ci, bi, and ui for each di. Note that if there
are a node in Ñ1(di) and a node in Ñ2(di) whose correspond-
ing neighbor nodes in Tn−1n are not selected as u j’s, they are
not used simultaneously for a single destination node.

If i’s are different, the edges selected in Step 5 are dis-
joint except for s. Paths constructed in Steps from 7 to 10
are disjoint because of the conditions described in Steps 1,
2 and 3. The (n − 1)(n − 2)/2 paths constructed in Step 11
are node-disjoint by the induction hypothesis. Hence, the
n(n−1)/2 paths which include a collection of (n−1)(n−2)/2
concatenations of paths selected in Step 11, and n − 1 paths
constructed in Steps from 5 to 10, are node-disjoint except
for s.

The maximum lengths of Step 5 and Steps from 7 to 12
are 1, n−2, n−1, n, n−1, L(n−1) and 3, respectively. Hence,
for Case 2, we obtain L(n) = max{L(n − 1) + 3, n + 1}.

It takes O(n6) time to select ui’s, ci’s and bi’s for di’s
in Steps 1, 2 and 3. Considering that a distance between
two nodes in Tn can be calculated in O(n) time, the time
complexities of Steps from 5 to 12 are O(n), O(n4), O(n4),
O(n4), O(n4), O(n3), T (n − 1) and O(n2) in this order. Steps
from 6 to 8 repeat at most O(n2) times. From discussions
above, we obtain T (n) = T (n − 1) + O(n6) for Case 2. �

Lemmas 1 and 2 give the following theorem.

Theorem 1: For an n-transposition graph, n(n− 1)/2 paths
constructed by our algorithm are node-disjoint except for s.
The time complexity and the maximum length of each path
are O(n7) and 3n − 5, respectively.

5. Computer Experiment

To evaluate the average performance of the algorithm,
we conducted the following computer experiment for an
n-transposition graph. The algorithm is implemented in the
programming language C. The program is compiled by gcc
with -O2 option and executed on a target machine with an
Intel Celeron 400 MHz CPU and a 128 MB memory unit.

Fig. 11 Length of each path.

Fig. 12 Time of paths construction.

1. Fix a source node to be 12 · · ·n and select destination
nodes randomly other than the source.

2. Apply the algorithm and measure the length of each
path and execution time.

Experiment is performed 1,000 times for each n from 2
to 50. Results are shown in Figs. 11 and 12. From these
figures we can observe that the average length of each path
and the average time of paths construction are of polynomial
order and approximately O(n) and O(n5.5), respectively, in
their ranges.

6. Conclusions

In this paper, we proposed a polynomial algorithm for
the node-to-set disjoint paths problem in an n-transposition
graph whose time complexity and the maximum length of
each path are O(n7) and 3n − 5, respectively. We also
conducted computer experiments to show that the average
length of each path and the average time are O(n) and
O(n5.5), respectively.
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