
2588
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.12 DECEMBER 2003

PAPER Special Issue on Dependable Computing

An Algorithm for Node-to-Set Disjoint Paths Problem in

Burnt Pancake Graphs

Keiichi KANEKO†, Regular Member

SUMMARY A burnt pancake graph is a variant of Cayley
graphs and its topology is suitable for massively parallel systems.
However, for a burnt pancake graph, there is much room for fur-
ther research. Hence, in this study, we focus on n-burnt pancake
graphs and propose an algorithm to obtain n disjoint paths from
a source node to n destination nodes in polynomial order time of
n, n being the degree of the graph. In addition, we estimate the
time complexity of the algorithm and the sum of path lengths.
We also give a proof of correctness of the algorithm. Moreover, we
report the results of computer simulation to evaluate the average
performance of the algorithm.
key words: burnt pancake graph, disjoint paths, polynomial
algorithm, fault tolerance, routing algorithm

1. Introduction

As studies of parallel and distributed processing pro-
ceed, massively parallel systems which connect many
processing elements have been proposed. However, a
large number of processing elements increases the pos-
sibility of the existence of faulty elements in the system,
and it is very important to be able to communicate
while avoiding these faulty elements. For this reason,
one of the essential problems in the area of parallel and
distributed processing is to find disjoint paths from one
node to a node set [9], [13], [14] as well as to find disjoint
paths between two nodes [6], [10], [15].

As an application example of the disjoint paths
from a node to a node set, there is the information dis-
persal algorithm by Rabin [16]. The algorithm divides
a file into n pieces and distributes them to n differ-
ent nodes in the network. Even if m of n pieces are
lost, the whole file can be recovered from remaining
n − m pieces. When distributing the n pieces to dif-
ferent nodes, it may be possible to avoid unrecoverable
damage or loss of data pieces by nodes or link faults on
distribution by using the disjoint paths.

A burnt pancake graph [8], [11] is a variant of Cay-
ley graphs [2]–[4], [7], [17] and its topology is suitable for
massively parallel systems because its degree and diam-
eter are smaller than a hypercube [17] that has a similar
number of nodes. However, for a burnt pancake graph,
neither the precise diameter nor an algorithm to ob-
tain shortest paths in polynomial time of the degree is

Manuscript received March 29, 2003.
Manuscript revised July 7, 2003.

†The author is with the Faculty of Technology, Tokyo
University of Agriculture and Technology, Koganei-shi, 184–
8588 Japan.

known, like pancake graphs [2]. So there is much room
for further research. Hence, in this study, we focus on
n-burnt pancake graphs and propose an algorithm to
obtain n disjoint paths from a source node to n des-
tination nodes in polynomial order time of n, n being
the degree of the graph. In the algorithm, the notion
of the traversal class is introduced and all nodes are
classified into those classes. Next, the algorithm takes
advantage of the recursive structure of a burnt pancake
graph, and reduces the generation of paths to n − 1
destination nodes to the subproblem in the burnt pan-
cake subgraph to which the source node belongs. The
path to the remaining one destination node which is dis-
joint to other paths is obtained by using a path whose
nodes belong to a specific traversal class. In addition,
we prove the correctness of our algorithm as well as es-
timate its time complexity and the complexity of the
sum of path lengths. Moreover, we conducted computer
simulations to evaluate the average performance of our
algorithm and report the results of this evaluation.

The rest of this paper is constructed as follows.
Chapter 2 introduces requisite definitions. Next, in
Chapter 3, we show our algorithm. Then, in Chap-
ter 4, we show the proof of its correctness and estimate
its complexity. Chapter 5 describes the computer simu-
lation and shows the average complexities. Finally, we
conclude in Chapter 6.

2. Definitions

First we define a signed permutation and a prefix re-
versal operation.

Definition 1: Consider a permutation (a1, a2, · · · ,
an) of n integers, 1, 2, · · · , n, and n signs bi ∈ {−1,+1}
(1 <= i <= n). Then we call a sequence u = (a1 ×
b1, a2× b2, · · · , an × bn) a signed sequence of n integers,
1, 2, · · · , n.
Definition 2: For a signed permutation u =
(u1, u2, · · · , un) of n integers, 1, 2, · · · , n, we define the
prefix reversal operation Pi(u) as follows:

Pi(u)=(−ui,−ui−1, · · · ,−u1, ui+1, · · · , un)

In the rest of this paper, we put the negative sign
at the top of symbols, ui, to save space.

The definition of an n-burnt pancake graph follows.

KANEKO: AN ALGORITHM FOR NODE-TO-SET DISJOINT PATHS PROBLEM IN BURNT PANCAKE GRAPHS
2589

Definition 3: A burnt pancake graph with degree n,
or an n-burnt pancake graph, Bn, has n! × 2n nodes,
each of which has a unique label which is a signed per-
mutation of 1, 2, · · · , n. The node which has a label
u = (u1, u2, · · · , un) is adjacent to nodes whose labels
are elements of the set {Pi(u) | 1 <= i <= n}.

Table 1 shows comparisons of a burnt pancake
graph against other topologies. In this table, Pn,
Rn, Sn, Tk,n, Mk,n, Qn, dBn,k, and Kn,k represent
an n-pancake graph, an n-rotator graph [5], an n-
star graph [2], a k-ary n-dimensional torus, a k-ary
n-dimensional mesh, an n-dimensional hypercube, an
(n, k)-de Bruijn graph, and an (n, k)-Kautz graph, re-
spectively. If we define an index

(Number of Nodes)/{(Degree)× (Diameter)},
Bn is superior to Pn, Rn, Sn, Tk,n, Mk,n, and Qn.
Though dBn,k and Kn,k are superior to Bn in this in-
dex, they do not have symmetry nor recursive struc-
ture that are suitable for executing some parallel and
distributed programs.

Figure 1 shows an example of a burnt pancake
graph. In an n-burnt pancake graph, a subgraph in-
duced by fixing the final integer of labels to k is an
(n − 1)-burnt pancake graph. An n-burnt pancake
graph consists of 2n disjoint (n − 1)-burnt pancake
graphs. We use Bn−1k to denote the burnt pancake
subgraph by fixing the final integer to k.

Definition 4: For any node u in an n-burnt pancake
graph, a node set produced by alternately applying the

Table 1 Comparisons of a burnt pancake graph against other
topologies.

#Nodes Degree Diameter
Bn n! × 2n n <= 2n + 3

Pn n! n − 1 <=
⌈

5(n+1)
3

⌉

Rn n! n − 1 n − 1

Sn n! n − 1
⌊

3(n−1)
2

⌋

Tk,n kn 2n n
⌊

k
2

⌋

Mk,n kn 2n n(k − 1)
Qn 2n n n

dBn,k nk n k
Kn,k nk + nk−1 n k

Fig. 1 An example of a 2-burnt pancake graph.

operations Pn and Pn−1 alternatively is called a traver-
sal class.

We use C(u) to denote a traversal class to which
u belongs. A path whose nodes belong to the same
traversal class is called a traversal class path.

Theorem 1: From the above definitions, for traversal
classes of an n-burnt pancake graph where n >= 3, we
derive the following properties.

1. A traversal class C has 4n nodes which are con-
nected in a ring structure.

2. There are (n − 1)!× 2n−2 traversal classes.
3. Each burnt pancake subgraph overlaps with each

traversal class by exactly two adjacent nodes.
4. Among the n neighbor nodes of each node u, ex-

actly two nodes belong to C(u). The other neigh-
bor nodes belong to different traversal classes from
C(u) and from each other.

(Proof) Each property is proved as follows:

1. For any node u = (u1, u2, · · · , un), alternative ap-
plications of Pn and Pn−1 generate a node sequence
(un, un−1, · · · , u1), (u2, u3, · · · , un, u1), (u1, un, · · · ,
u2), (u3, · · · , un, u1, u2), · · ·, (un−1, un−2, · · · , u1,
un), (u1, u2, · · · , un), (un, un−1, · · · , u1), (u2, · · · ,
un, u1), (u1, un, · · · , u2), (u3, · · · , un, u1, u2), (u2,
u1, un, · · · , u3), · · ·, (un−1, · · · , u1, un), (u1, u2, · · · ,
un). This sequence constructs a cycle whose length
is 4n. If we take pairs of elements from the begin-
ning of this sequence two by two, each pair of nodes
has a unique integer at their last positions. In ad-
dition, the two nodes in a pair are also different.
Hence, each node pair belongs to a unique burnt
pancake subgraph and the node set construction
method results in a simple cycle, that is, a ring
structure.

2. The number of nodes is n! × 2n and each traver-
sal class has 4n nodes. Therefore, the number of
traversal classes is (n − 1)!× 2n−2.

3. Trivial from the proof of Property 1.
4. From the definition of traversal classes, it follows

that neighbor nodes Pn(u) and Pn−1(u) of node u
belong to C(u). In addition, from Property 3, it
follows that there are two nodes in each burnt pan-
cake subgraph which belong to C(u). Moreover,
all nodes in N = {P1(u), P2(u), · · · , Pn−2(u)} be-
long to the burnt pancake subgraph that includes
u. Therefore, the nodes in N do not overlap
with those in C(u). Additionally, if C(Pi(u)) =
C(Pj(u)) (1 <= i < j <= n− 2) then, from the proof
of Property 1, Pn−1(Pi(u)) = Pj(u) holds and this
implies that j = n − 1, which is a contradiction.
Hence, all nodes in N belong to different traversal
classes.

For instance, a 3-burnt pancake graph, B3, has the
following four traversal classes, C1, C2, C3, and C4, and

2590
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.12 DECEMBER 2003

each traversal class has twelve nodes.

C1 = {(1, 2, 3), (3, 2, 1), (2, 3, 1), (1, 3, 2),
(3, 1, 2), (2, 1, 3), (1, 2, 3), (3, 2, 1),
(2, 3, 1), (1, 3, 2), (3, 1, 2), (2, 1, 3)}

C2 = {(2, 1, 3), (3, 1, 2), (1, 3, 2), (2, 3, 1),
(3, 2, 1), (1, 2, 3), (2, 1, 3), (3, 1, 2),
(1, 3, 2), (2, 3, 1), (3, 2, 1), (1, 2, 3)}

C3 = {(1, 2, 3), (3, 2, 1), (2, 3, 1), (1, 3, 2),
(3, 1, 2), (2, 1, 3), (1, 2, 3), (3, 2, 1),
(2, 3, 1), (1, 3, 2), (3, 1, 2), (2, 1, 3)}

C4 = {(2, 1, 3), (3, 1, 2), (1, 3, 2), (2, 3, 1),
(3, 2, 1), (1, 2, 3), (2, 1, 3), (3, 1, 2),
(1, 3, 2), (2, 3, 1), (3, 2, 1), (1, 2, 3)}

As mentioned in the previous section, for an n-
burnt pancake graph, there is not yet any known algo-
rithm to find the shortest path between two nodes in
polynomial time of n. However, we have an algorithm
which finds a path of length at most 3n in polynomial
time of O(n2) for any two nodes.

Definition 5: We call the routing algorithm for two
nodes s = (s1, s2, · · · , sn) and d = (d1, d2, · · · , dn) in an
n-burnt pancake graph shown in Fig. 2 a polynomial-
time routing algorithm.

Finally, we introduce the definition of the node-to-
set disjoint paths problem. The problem can be stated
for a k-connected graph that is a graph for which dele-
tions of any set of k − 1 nodes cannot make the graph
disconnected.

Definition 6: For any node s and a set of nodes
{d1, d2, · · · , dk} in a k-connected graph, the node-to-
set paths problem is to find k paths from s to di’s
which are node-disjoint except for s.

Menger’s theorem ensures that for any source node
and k arbitrary destination nodes in an arbitrary k-
connected graph there exist k paths from the source to
the destinations that are disjoint except for the source.
The maximal flow algorithm can obtain these k disjoint
paths in polynomial time of the number of nodes in the
graph. However, this approach is impractical in cases
for which the number of nodes is very large.

procedure routing(s,d)
begin

P := [s]; /* empty path */
c := s; /* current node */

for k := n to 1 step −1 do begin
while ck = dk do k := k - 1;
if k = 0 then break;
find h where |ch| = |dk|;
if 1 < h then /* bring ch at the front position */

begin c := Ph(c); P := P ++ [c] end;
if c1 = dk then /* make c1 = dk */

begin c := P1(c); P := P ++ [c] end;
c := Pk(c); P := P ++ [c]

end
end;

Fig. 2 A polynomial-time routing algorithm.

Many Cayley graphs including a burnt pancake
graph with degree k have been proven to be k-
connected [1]. Hence, an n-burnt pancake graph is n-
connected. Therefore, it is the purpose of this study to
obtain paths from an arbitrary source node to n des-
tination nodes that are disjoint except for the source
node in a polynomial time of n.

3. Algorithm

3.1 Cases by Distribution of Destination Nodes

In the case of n = 2, it is trivial to find the solu-
tion to the node-to-set disjoint paths problem in an
n-burnt pancake graph. Hence, we assume that n >= 3
in the following discussion. Taking advantage of the
symmetric property of Bn, we fix the source node to
s = (1, 2, · · · , n). Let D = {d1, d2, · · · , dn} be the set
of n destination nodes. Then we consider the following
two cases.

Case I All destination nodes belong to the subgraph
which includes the source node (D ⊂ Bn−1n).

Case II There exists a destination node which does
not belong to the same subgraph as the source node
(D 	⊂ Bn−1n).

In the following sections, we describe procedures to ob-
tain disjoint paths from the source node to the desti-
nation nodes for these two cases.

3.2 Case I

In Case I (D ⊂ Bn−1n) as described in the previous
section, disjoint paths are obtained by the following
procedure.

1. For Bn−1n, we apply our algorithm recursively to
obtain disjoint paths from s to {d1, d2, · · · , dn−1}.
If dn is on one of these paths, say a path from
s to dh, then exchange the indices of dh and dn

and discard the subpath between dh and dn. See
Fig. 3. Large circles represent burnt pancake sub-
graphs while small circles represent nodes. The
destination nodes are emphasized by thick lines.

2. Select edge (dn, Pn(dn)).
3. Select a path through the traversal class C(s)

starting from s to a node s̃ in Bn−1d1 ∩ C(s),
such that the path does not include any nodes

Fig. 3 Case I, Step 1.

KANEKO: AN ALGORITHM FOR NODE-TO-SET DISJOINT PATHS PROBLEM IN BURNT PANCAKE GRAPHS
2591

in Bn−1n nor Bn−1d1, and assume that dn =
(d1, d2, · · · , dn). See Fig. 4.

4. In Bn−1d1, find a path from s̃ to Pn(dn) by the
polynomial-time routing algorithm. See Fig. 5.

3.3 Case II

In Case II (D 	⊂ Bn−1n) as described previously, dis-
joint paths are obtained by the following procedure.

1. Divide the destination nodes into the following two
sets D1 and D2.

• D1: The set of destination nodes such that
there is a traversal class path from that desti-
nation node to one of the nodes in Bn−1n that
does not include any other destination nodes.

• D2: Destination nodes other than D1.

Here, we assume that D1 = {d1, d2, · · · , dk} and
D2 = {dk+1, dk+2, · · · , dn} without loss of gener-
ality. See Fig. 6. Note that dashed ellipses repre-
sent node sets and horizontal dashed lines repre-
sent ring structures of traversal classes. Note also
that both ends of each dashed line are assumed to
be connected.

2. For each destination node di (k + 1 <= i <= n) in
D2, select a neighbor node d̃i of di that satisfies
following conditions:

• C(d̃i) ∩ D = ∅;
• ∀j(= i), C(d̃i) 	= C(d̃j)

Fig. 4 Case I, Step 3.

Fig. 5 Case I, Step 4.

Fig. 6 Case II, Step 1.

See Fig. 7. For each node in D2, a neighbor node
is selected such that its traversal class is different
from those of others. Note that these neighbor
nodes can be selected based on the properties of
traversal classes. That is, the number of nodes in
D2 is at most n − 2 and each node di in D2 has
n neighbor nodes. Two of those neighbor nodes
belong to the same traversal class as di and the
remaining n−2 nodes belong to different traversal
classes from C(di) and from each other. Therefore,
we can select a node d̃j which satisfies the above
conditions. In the rest of this paper, let d̃i = di

(1 <= i <= k).
3. For i (1 <= i <= n), establish a traversal class path

between d̃i and a node ci in Bn−1n such that the
path does not include other d̃j’s nor other nodes
in Bn−1n. Note that if there exists a node d̃i such
that d̃i /∈ Bn−1n and d̃i ∈ C(s), then select a
path such that s is included in {c1, c2, · · · , cn}.
Moreover, note that if d̃i is in Bn−1n then the
path consists of the node itself. In addition, select
edges (d̃i, di) (k + 1 <= i <= n). See Fig. 8.

4. If there exists an i∗ such that s ∈ C(d̃i∗), apply our
algorithm recursively on Bn−1n to obtain disjoint
paths from s to d̃i (i 	= i∗) and terminate. See
Fig. 9.

5. Select a node which is on one of paths obtained in
Step 3 and not included in Bn−1n. Let u repre-
sent the node. Assume that u ∈ Bn−1h. Select
a traversal class path between s and a node s̃ in
Bn−1h such that the path does not include other
nodes in Bn−1n nor Bn−1h. See Fig. 10. A sub-
path between s and s̃ is selected. Note that it is a

Fig. 7 Case II, Step 2.

Fig. 8 Case II, Step 3.

Fig. 9 Case II, Step 4.

2592
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.12 DECEMBER 2003

Fig. 10 Case II, Step 5.

Fig. 11 Case II, Step 6.

Fig. 12 Case II, Step 7.

traversal class path though it is not horizontal.
6. Find a path from s̃ to u in Bn−1h by the

polynomial-time routing algorithm. If this path
contains a node (or nodes) on the path obtained
in Step 3, let v denote the node and discard the
subpath from node v to node u. See Fig. 11. Oth-
erwise, let u represent node v.

7. Let w be the terminal node in Bn−1n of the path
which was obtained in Step 3 and includes v. Dis-
card the subpath from w to v. Moreover, apply
our algorithm recursively to Bn−1n to obtain dis-
joint paths from s to {c1, c2, · · · , cn} − {w} and
terminate. See Fig. 12.

4. Proof of Correctness and Estimation of
Complexities

In this chapter, we give a proof of the correctness of our
algorithm and estimate its time complexity and the sum
of path lengths.

Theorem 2: Paths generated by our algorithm are
disjoint except for the source node. Let T (n) and L(n)
represent the time complexity and the complexity of
the sum of path lengths for an n-burnt pancake graph,
respectively. Then T (n) = O(n5) and L(n) = O(n3).

(Proof) It can be proved from induction on n and the
following two lemmas.

Lemma 1: The paths generated by the procedure for
Case I are disjoint except for the source node. The time
complexity of this procedure is T (n − 1) + O(n4) and
the sum of path lengths is L(n − 1) + O(n).

Table 2 Time complexity and sum of path lengths for each
step in the procedure for Case II.

Time Complexity Sum of Path Lengths
Step 1 O(n3) —
Step 2 O(n4) —
Step 3 O(n3) O(n2)
Step 4 T (n − 1) + O(n2) L(n − 1)
Step 5 O(n2) O(n)
Step 6 O(n3) O(n)
Step 7 T (n − 1) L(n − 1)

(Proof) All paths obtained in Step 1 are known to be
disjoint except for the source node s by the induction
hypothesis. Moreover, the path from s to dn generated
by Steps 2 to 4 is outside of Bn−1n except for s and dn.
In addition, all paths inside Bn−1n are constructed to
not include dn. Therefore, all paths generated by this
procedure are disjoint except for s.

The time complexity in Step 1 is T (n− 1)+L(n−
1)×n. It is equal to T (n−1)+O(n4) by the induction
hypothesis. In addition, the sum of path lengths is
L(n− 1). The time complexity of Steps 2 to 4 is O(n2)
and the sum of path lengths is O(n). Hence, the total
time complexity and the sum of path lengths are T (n−
1) + O(n4) and L(n − 1) + O(n), respectively.

Lemma 2: The paths generated by the procedure for
Case II are disjoint except for the source node. The
time complexity of this procedure is T (n − 1) + O(n4)
and the sum of path lengths is L(n − 1) + O(n2).

(Proof) Paths generated in Step 3 are separate traversal
class paths that start from different nodes ci in Bn−1n
and end in different destination nodes di or their neigh-
bor nodes d̃i with edges (d̃i, di). Hence, they are all
disjoint. The paths obtained in Step 4 are disjoint ex-
cept for s by induction hypothesis. They are trivially
disjoint from the paths obtained in Step 3 except for ci.
Paths obtained in Step 6 are necessarily disjoint from
other paths except for s and v because of the manner of
their construction. In addition, paths obtained by the
recursive application of our algorithm are disjoint from
each other except for s by induction hypothesis, and
also disjoint from other paths except for ci. Therefore,
the paths generated by this procedure are all disjoint
except for the source node s.

The time complexity and the sum of path lengths
for each step are summarized in Table 2.

Table 2 shows the time complexity of this proce-
dure to be T (n−1)+O(n4), and the sum of path lengths
to be L(n − 1) + O(n2).

5. Computer Simulation

To evaluate the average performance of our algorithm,
we conducted the following computer simulation for an
n-burnt pancake graph. Our algorithm is implemented
in the functional programming language Haskell. The

KANEKO: AN ALGORITHM FOR NODE-TO-SET DISJOINT PATHS PROBLEM IN BURNT PANCAKE GRAPHS
2593

Fig. 13 Average time for path construction.

Fig. 14 Average sum of paths length.

program is compiled with the Glasgow Haskell Com-
piler with options -O and -fglasgow-exts and is exe-
cuted on a target machine equipped with an Intel Pen-
tium III 700MHz CPU and a 512MB memory unit.

1. Select a source node s randomly.
2. Select n different destination nodes d1, d2, · · · , dn

other than s randomly.
3. Apply our algorithm and measure the execution

time and the sum of path lengths.

The simulation was performed 1,000 times for each n
of n = 2, · · · , 50. Figures 13 and 14 show the average
execution time and the average sum of path lengths,
respectively. Three lines in each figure are added to
estimate the decline of plotted data. From these figures,
the average execution time and the average sum of path
lengths are both in polynomial order of n, and about
O(n4) and O(n3), respectively.

6. Conclusion

In this study, we selected an n-burnt pancake graph
as a target, and we have proposed an algorithm which
finds n disjoint paths for one source node and n desti-

nation nodes in polynomial-order time of the degree n.
In addition, we have given a proof of the correctness of
our algorithm and we have shown that the time com-
plexity and the complexity of the sum of path lengths
are O(n5) and O(n3), respectively. Moreover, we have
evaluated the average performance of our algorithm by
computer simulation and have shown that the average
time complexity and the average complexity of sum of
path lengths are O(n4) and O(n3), respectively.

Future works include improvement of our algo-
rithm to find shorter disjoint paths in a shorter time
and the application of this algorithm to other topolo-
gies such as generalized pancake graphs [12]. Verifica-
tion of our algorithm in practical use is also a future
work.

References

[1] S.B. Akers and B. Krishnamurthy, “On group graphs and
their fault tolerance,” IEEE Trans. Comput., vol.C-36,
no.7, pp.885–888, July 1987.

[2] S.B. Akers and B. Krishnamurthy, “A group theoretic
model for symmetric interconnection networks,” IEEE
Trans. Comput., vol.38, no.4, pp.555–566, April 1989.

[3] S.G. Akl, K. Qiu, and I. Stojmenović, “Fundamental algo-
rithms for the star and pancake interconnection networks
with applications to computational geometry,” Networks,
vol.23, no.4, pp.215–226, July 1993.

[4] P. Berthomé, A. Ferreira, and S. Perennes, “Optimal infor-
mation dissemination in star and pancake networks,” IEEE
Trans. Parallel Distrib. Syst., vol.7, no.12, pp.1292–1300,
Dec. 1996.

[5] P.F. Corbett, “Rotator graphs: An efficient topology for
point-to-point multiprocessor networks,” IEEE Trans. Par-
allel Distrib. Syst., vol.3, no.5, pp.622–626, May 1992.

[6] M. Dietzfelbinger, S. Madhavapeddy, and I.H. Sudborough,
“Three disjoint path paradigms in star networks,” Proc. 3rd
IEEE Symp. Parallel and Distributed Processing, pp.400–
406, 1991.

[7] L. Garfgano, U. Vaccaro, and A. Vozella, “Fault tolerant
routing in the star and pancake interconnection networks,”
Inf. Process. Lett., vol.45, no.6, pp.315–320, June 1993.

[8] W.H. Gates and C.H. Papadimitriou, “Bounds for sorting
by prefix reversal,” Discrete Mathematics, vol.27, pp.47–57,
1979.

[9] Q.P. Gu and S. Peng, “Node-to-set disjoint paths problem
in star graphs,” Inf. Process. Lett., vol.62, no.4, pp.201–207,
April 1997.

[10] Y. Hamada, F. Bao, A. Mei, and Y. Igarashi, “Nonadaptive
fault-tolerant file transmission in rotator graphs,” IEICE
Trans. Fundamentals, vol.E79-A, no.4, pp.477–482, April
1996.

[11] M. Heydari and I.H. Sudborough, “On sorting by prefix
reversals and the diameter of pancake networks,” Lecture
Notes in Computer Science, vol.678, pp.218–227, 1993.

[12] M.P. Justan, F.P. Muga II, and I.H. Sudborough, “On the
generalization of the pancake network,” Proc. 2002 Int’l
Symp. Parallel Architectures, Algorithms, and Networks,
pp.173–178, Dec. 2002.

[13] K. Kaneko and Y. Suzuki, “An algorithm for node-to-set
disjoint paths problem in rotator graphs,” IEICE Trans.
Inf. & Syst., vol.E84-D, no.9, pp.1155–1163, Sept. 2001.

[14] K. Kaneko and Y. Suzuki, “Node-to-set disjoint paths prob-
lem in pancake graphs,” IEICE Trans. Inf. & Syst., vol.E86-

2594
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.12 DECEMBER 2003

D, no.9, pp.1628–1633, Sept. 2003.
[15] S. Madhavapeddy and I.H. Sudborough, “A topological

property of hypercubes: Node disjoint paths,” Proc. 2nd
IEEE Symp. Parallel and Distributed Processing, pp.532–
539, 1990.

[16] M.O. Rabin, “Efficient dispersal of information for security,
load balancing, and fault tolerance,” J. ACM, vol.36, no.2,
pp.335–348, April 1989.

[17] C.L. Seitz, “The cosmic cube,” Commun. ACM, vol.28,
no.7, pp.22–33, July 1985.

Keiichi Kaneko is an Associate Pro-
fessor at Tokyo University of Agriculture
and Technology. His main research areas
are functional programming, parallel and
distributed computation, partial evalua-
tion and fault-tolerant systems. He re-
ceived the B.E., M.E. and Ph.D. degrees
from the University of Tokyo in 1985,
1987 and 1994, respectively. He is also
a member of ACM, IPSJ and JSSST.

