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SUMMARY A minimum feedback node set in a graph is a
minimum node subset whose deletion makes the graph acyclic.
Its detection in a dependency graph is important to recover from
a deadlock configuration. A livelock configuration is also avoid-
able if a check point is set in each node in the minimum feedback
node set. Hence, its detection is very important to establish de-
pendable network systems. In this letter, we give a minimum
feedback node set in a trivalent Cayley graph. Assuming that
each word has n bits, for any node, we can judge if it is included
in the set or not in constant time.
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1. Introduction

Currently, studies of parallel and distributed computa-
tion are becoming more significant. Moreover, research
on so-called massively parallel machines has been con-
ducted enthusiastically in recent years. Hence, many
complex topologies of interconnection networks have
been proposed. Most graphs studied so far offer a high
processor density while keeping their diameters small.
However, the degrees of these famous topologies, such
as hypercubes and star graphs, increase with graph
sizes, that is, the number of nodes. Interconnection
networks with variable degrees require a large number
of I/O communication ports when they are applied to
massively parallel machines.

To overcome this difficulty, some interconnection
networks with constant degrees have been proposed [3],
[4],[8],[9]. A trivalent Cayley graph[9] is one of these
networks, which has constant degree 3. Much attention
has been paid to this graph since it has regularity which
cannot be found with famous topologies with constant
degrees such as de Bruijn and Kautz graphs.

Finding feedback node sets in interconnection net-
works is one of the most important issues. Its detection
in a dependency graph is important to recover from a
deadlock configuration. A livelock configuration is also
avoidable if a check point is set in each node in the
feedback node set. For general graphs, it is proved that
the problem of finding it belongs to the NP-complete
class[2]. However, polynomial algorithms for finding
minimum size feedback node sets in cocomparability
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graphs, convex bipartite graphs, interval graphs, and
cyclically reducible graphs have been proposed [5], [6],
[10]. In [7], a polynomial algorithm finding minimum
feedback sets in graphs whose vertex degrees are at
most 3 is proposed. These algorithms take polynomial
time of the number of nodes. Hence, for graphs with
many nodes, this approach is still impractical.

In this letter, we give a minimum feedback node
set in a trivalent Cayley graph. Each node in the graph
can be judged whether it is in the set or not in constant
time.

2. Preliminaries

This section gives a definition of a trivalent Cayley
graph and a minimum feedback node set of a general
graph. The lower bound of the cardinality of such set
is also given.

Definition 1: [9] In an n-dimensional trivalent Cay-
ley graph T'C,,, each node has a label a = ajas---ay,
which satisfies following two conditions:

hd CliE{:l:l,:l:Q,---,:l:n} (1S1Sn)v
o |a;ir1| = (Ja;] modn)+1(1<i<n-1).

In the following, we denote —a; as a;. Each edge is
of the type (a,d(a)) where § € {g, f, f~'}, defined as
follows:

g(a) :a1a2...a_n7
f(a) = azas---ana,

f(a) = anaras - an_1.

Note that a; = a;.

TC, is a symmetric undirected 3-regular graph.
The numbers of nodes and edges of T'C,, are n2™ and
3n2" ! respectively. Figure 1 shows an example of
T'C3 which has 24 nodes and 36 edges. In this example,
edges (123,123), (123,231) and (123, 312) are obtained
by operations g, f (or equivalently f=1) and f~! (or
equivalently f), respectively.

Definition 2: A feedback node set of a graph
G(V,E), where V and E represent its node and edge
sets, respectively, is a subset of nodes S C V whose
deletion from G induces an acyclic graph G'(V', E’)
with V! = V\S and E' = {(u,v) € E;u,v € V'}. If



LETTER

the cardinality of S is the minimum possible, we call it
a minimum feedback node set of G.

The lower bound of the cardinality of a minimum
feedback node set for a general graph is given as follows.

Lemma 1: [1] Any feedback node set in a graph
G(V,E) with maximum degree r has at least (|E| —
[V|+1)/(r — 1) nodes.

Corollary 1: A minimum feedback node set of the
TC,, has at least n2"~2 + 1 nodes.

3. Minimum Feedback Node Set in TC,,

In TC,(V, E), consider a subset S C V that consists of
node 12 - - -n and all nodes whose first and last elements
are both negative, i.e.,

S={aaz---an|ar <0,a, <0}U{12---n}.

Note that |S| =n2"72 4 1. If S is a feedback node set
of T'C), it is one of minimum feedback node sets.

In the following, we prove that S is a minimum
feedback node set in T'C),. Let T'CJ, be the subgraph of
TC,, induced by V\S.

We classify each node @ = ajas - - a,, in TC!, into
following three subsets according to its first and last
elements:

S+7+ = {a | a; > O,CLn > 0}

S_+={ala <0,a, >0}

Sy_={ala >0,a, <0}
Note that node 12 - - - n is not included in S5 . Figure 2
is the state transition diagram where a state represents

one of the subsets of nodes and a transition is denoted
by a directed edge and its corresponding operations.

Lemma 2: Any node in S_ | is not included in a cy-
cle in TCY,.

Proof: Assume a cycle that includes node in S_ .
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Fig.2 State transition diagram.

Case 1 (All nodes in the cycle are in S_ ;.) The cy-
cle must be obtained by repeating operation f (or
equivalently f~!) 2n times. However, any such
cycle must contain a node whose first element is
negative. Hence, there is no cycle whose nodes are
all in S_ ;.

Case 2 (The cycle includes a node which is not in
S_ +.) The cycle has a subpath beginning with
an edge from S, | to S_ ; obtained by operation
f~1 and ending with an edge from S_ | to S; 4
obtained by operation f. Since operation g cannot
be applied to S_ 4, this subpath includes a path
u — v — w of length 2 where edges (u, v) and
(v, w) are obtained by operations f~! and f, re-
spectively. However, from the definition, these two
operations cannot be applied in succession.

From above discussion, there is no cycle that includes
a node in S_ 4. O

Lemma 3: There is no cycle in T'CY, which consists
of nodes in S _ only.

Proof: It is trivial from case 1 in the proof of Lemma
2. O

Lemma 4: Any edge (u,g(u)) where u € S; _ is not
included in a cycle in T'CY,.

Proof: Assume that a cycle includes edge (u,g(u))
where u € S _. Then, from Fig. 2, the cycle must be
obtained by an alternative repetition of operations g
and f* where fT represents one or more iterations of
operation f.

Case 1 (The cycle includes a node that has more than
one negative elements.) By an alternative repeti-
tion of operations g and f*, the preceding negative
element in the node is moved to left and finally it
appears at the first position which is a contradic-
tion. Hence, there is no cycle in this case.

Case 2 (Any node in the cycle has at most one nega-
tive element.) In such a cycle, there must be node
12---n which is deleted already. Hence, there is
no such cycle. O

Lemma 5: Any edge (u, f~!(u)) where u € S; _ is
not included in a cycle in T'CY,.

Proof: Assume that a cycle in TC/ includes edge
(u, f~(u)) where w € S; _. Then from Lemma 4
the cycle must be obtained by an alternative repetition
of operations g and (f~!)* where (f~1)T represents
one or more iterations of operation f~!. Then from



1636

the similar discussion to Lemma 4, Lemma 5 can be
proved. O

From lemmas above, we obtain the followings.
Lemma 6: T'C/ does not have a cycle.

Theorem 1: S is a minimum feedback node set of

TC,.
By similar discussions, we obtain the following.

Corollary 2: In TC,(V, E), consider subset S’ C V
that consists of node 12---n and all nodes whose first
and last elements are both positive. Then, S’ is a min-
imum feedback node set of T'C,,.

4. Conclusion

In this letter, we have presented a minimum feedback
node set in an n-dimensional trivalent Cayley graph.
The set consists of node 12---n and all nodes whose
first and last elements are both negative. Assuming
that each word has n bits, for any node, we can judge if
it is included in the set or not in constant time. Future
works include developments of the effective algorithms
for finding minimum feedback node sets in other famous
topologies.
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