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PAPER

Fault-Tolerant Routing Algorithms for Hypercube

Interconnection Networks

Keiichi KANEKO† and Hideo ITO††, Regular Members

SUMMARY Many researchers have used hypercube inter-
connection networks for their good properties to construct many
parallel processing systems. However, as the number of proces-
sors increases, the probability of occurrences of faulty nodes also
increases. Hence, for hypercube interconnection networks which
have faulty nodes, several efficient dynamic routing algorithms
have been proposed which allow each node to hold status in-
formation of its neighbor nodes. In this paper, we propose an
improved version of the algorithm proposed by Chiu and Wu by
introducing the notion of full reachability. A fully reachable node
is a node that can reach all nonfaulty nodes which have Hamming
distance l from the node via paths of length l. In addition, we
further improve the algorithm by classifying the possibilities of
detours with respect to each Hamming distance between current
and target nodes. We propose an initialization procedure which
makes use of an equivalent condition to perform this classifica-
tion efficiently. Moreover, we conduct a simulation to measure
the improvement ratio and to compare our algorithms with oth-
ers. The simulation results show that the algorithms are effective
when they are applied to low-dimensional hypercube interconnec-
tion networks.
key words: hypercube interconnection networks, fault-tolerant
routing, full reachability, hamming distance, communication

1. Introduction

Recently, interest in parallel processing is spreading
rapidly and many parallel processing systems have ap-
peared. Current researchers have a tendency to target
the parallel processing based on a connection of ex-
treme numbers of processors, that is, massively parallel
processing. However, as the number of processors in-
creases, the probability of occurrences of faulty nodes
also increases. Hence, it is necessary to construct com-
munication paths which detour faulty processors.

We adopt a hypercube interconnection network [5],
[8], [9] as the target parallel processing system. Many
researchers have used hypercube networks for their
good properties, such as a symmetric and regular struc-
ture and a relatively small diameter [1], [6], [10]. We
focus on a dynamic routing scheme for message com-
munication between processors in a hypercube network
which has multiple faulty nodes in order to suppress
degradation of system performance after generation of
faulty nodes.
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In a parallel processing system which has faulty
processors, it is very important to select one of the
shortest paths to the target node to establish commu-
nication between processors. If every processor in the
system were to identify the status of all other proces-
sors, an optimal routing would be possible. However,
because of restrictions of space and time complexities
to solve the shortest path problem, it is very difficult
to adopt this approach. For hypercube interconnec-
tion networks, several efficient dynamic routing algo-
rithms have been proposed which allow each node to
hold status information of neighbor nodes [3], [4], [7],
[11]. One of the algorithms we propose is based on
Chiu and Wu’s [3], with the addition of the notion of
full reachability to improve performance. In addition,
we further introduce the notion of unsafe nodes with
respect to distance to improve the algorithm. Finally,
we conducted a simulation to measure the improvement
ratio and to compare our algorithms with an algorithm
by Chiu and Chen [4] which uses the equivalent notion
of the proposed full reachability.

The rest of this paper is constructed as follows.
Section 2 defines several preliminary definitions and de-
scribes the routing algorithm proposed by Chiu and
Wu [4]. In Sect. 3 and 4, we give definitions of full
reachability and node classifications. In addition, the
proposed algorithms and initialization procedures are
presented. In Sect. 5, a simulation is performed and
the algorithms are evaluated. Section 6 describes con-
clusions.

2. Routing Algorithms

2.1 Hypercube Interconnection Networks

First of all, we give the definition of a hypercube.

Definition 1: (d-dimensional hypercube)
A d-dimensional hypercube interconnection network
consists of 2d nodes whose addresses are represented by
d-bit binary numbers. A node n has d adjacent nodes
whose addresses are obtained by reverting, one by one,
each bit of its address.

Let H(n1, n2) be the Hamming distance between
two nodes n1 and n2 in a hypercube; then the length of
the shortest path between two nodes n1 and n2 is equal
to H(n1, n2) if there is no faulty node.
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Consider a message delivery from a source node s
to a target node t. First, let N(s) represent the set of
neighbor nodes of the node s.

N(s) = {n | H(s, n) = 1}
Next, let D(s, t) represent the subset of neighbor nodes
of s which are closer to the target node t than the node
s.

D(s, t) = {n | H(n, t) = H(s, t)− 1, n ∈ N(s)}
Then, the equation |D(s, t)| = H(s, t) holds and we can
send the message with the address of target node t to
any node c in D(s, t). Now, let us consider the node c
as a new source one, and repeat the process above until
the message reaches the target node.

2.2 Routing Problem

In a hypercube interconnection network which has
faulty nodes, it is necessary for message delivery to find
a path which goes from the source node to the target
and touches no faulty nodes. For this purpose, each
node can store information about neighbor nodes and
make use of that combined with the address of the tar-
get node to select a neighbor node dynamically to send
the message. In addition, even if any shortest path
cannot be found by the information, a detour must be
detected. An algorithm which performs these opera-
tions is called a routing algorithm. In this situation, a
good algorithm finds as many shortest paths as possible
while holding as simple information as possible.

Definition 2: (reachability and communicability)
If there exists a path from the source node s to the
target node t which includes no faulty nodes, t is said
to be reachable from s. If a routing algorithm R finds
the path, t is said to be communicable from s by R.

2.3 Algorithm by Chiu and Wu

In this section, we describe the algorithm proposed by
Chiu and Wu [3] which is referred as route in this pa-
per. The algorithm, first, divides the nonfaulty nodes
in a hypercube network into safe and unsafe nodes.
It then classifies the unsafe nodes into ordinary and
strongly unsafe nodes. Here are their main definitions
and theorems followed by the algorithm.

The first definition gives a classification of non-
faulty nodes. Note that it is defined recursively.

Definition 3: (safe and unsafe nodes)
A nonfaulty node n is unsafe if it is adjacent to two or
more faulty nodes or it is adjacent to more than two
faulty or unsafe nodes. A nonfaulty node is safe if it is
not unsafe.

Definition 4: (strongly and ordinary unsafe nodes)
An unsafe node n is strongly unsafe if every neighbor
node of n is either unsafe or faulty. An unsafe node n
is ordinary unsafe if it is not a strongly unsafe node.

Figure 1 shows a classification example of nodes
based on the definitions above. Moreover, we define full
unsafeness as a property of hypercube interconnection
networks.

Definition 5: (fully unsafe networks)
A hypercube interconnection network is fully unsafe if
all the nonfaulty nodes in the network are unsafe nodes.

In the rest of this paper, let S, Ū and Ũ repre-
sent the set of safe, ordinary unsafe and strongly un-
safe nodes, respectively. Figure 2 shows the algorithm
by Chiu and Wu.

Then the following theorems hold according to the
property of hypercube interconnection networks [3].

Theorem 1: If either the source node s or the target
t is safe, the algorithm route can communicate by one
of the shortest paths of length H(s, t).

Theorem 2: If the source node s is ordinary unsafe
and the target t is unsafe, the algorithm route can com-
municate by a path whose length is at most H(s, t)+2.

Theorem 3: In a hypercube interconnection network

Fig. 1 Node classification by Chiu and Wu.

procedure route(c, t)
begin

l := H(c,t); N := N(c); D := D(c,t);
if l = 0 then deliver the message to c and exit

else if ∃n ∈ D ∩ S then nxt := n
(* for future replacement *)

else if ∃n ∈ D ∩ Ū then nxt := n
else if ∃n ∈ D ∩ Ũ and (c ∈ Ũ or l ≤ 2) then

nxt := n
else if ∃n ∈ (N − D) ∩ S then nxt := n
else if ∃n ∈ (N − D) ∩ Ū then nxt := n
else error(’unable to deliver’);

route(nxt, t)
end

Fig. 2 Routing algorithm route by Chiu and Wu.
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which is not fully unsafe, every strongly unsafe node
is adjacent to an ordinary unsafe node. Hence, if the
source node s is strongly unsafe and the target t is an
unsafe node in a hypercube which is not fully unsafe,
the algorithm route can communicate by a path whose
length is at most H(s, t) + 4.

Each nonfaulty node in a hypercube interconnec-
tion network exchanges information with its neighbor
nodes to classify itself as a safe, an ordinary unsafe, or
a strongly unsafe node. Using this classification, if a d-
dimensional hypercube interconnection network is not
fully unsafe, an effective routing can be implemented
based on theorems 1, 2, and 3. Even if the hypercube
network is fully unsafe, the algorithm route is applica-
ble. However, the target is not always communicatable
by the algorithm even if it is reachable from the source.
In this case, it is necessary to switch to other worse
algorithms [2].

3. An Algorithm Based on Full Reachability

3.1 Full Reachability and Safe Nodes with Respect to
Distance

This section describes the algorithm FR which we pro-
pose. It makes use of the fact that the Hamming dis-
tance to the target is available to select the neighbor
node to send a message. For this purpose, a property
of reachability is defined: a node is reachable to every
nonfaulty node which is apart from it by some fixed
Hamming distance via a path of the same length as the
Hamming distance.

Definition 6: (full reachability with respect to dis-
tance)
A nonfaulty node n is fully reachable with respect to
(Hamming) distance h, if every nonfaulty nodes which
is apart from the node n by Hamming distance h is
reachable from the node n via a path of length h.

Let Rh represent the set of nodes which are fully
reachable with respect to distance h. When a node n
which is apart from the target node by Hamming dis-
tance h+1 receives a message and tries to select a node
to send it, if it could be known whether every one of
its neighbor nodes belongs to Rh or not, unnecessary
detours could be avoided. However, the membership
of a nonfaulty node to Rh depends on the distribution
of all those faulty nodes which are apart from it by
a Hamming distance of h or less. It means that each
nonfaulty node must collect the information about all
faulty nodes to decide if it itself belongs to Rh or not.
Therefore, it is difficult to identify Rh and find an ap-
propriate route. To address this problem, we introduce
an approximation of Rh.

Definition 7: (safe nodes with respect to distance)
Every nonfaulty node is a safe node with respect to

(Hamming) distance 1. A nonfaulty node is a safe node
with respect to distance h if it is adjacent to more than
or equal to d−h+1 safe nodes with respect to distance
h − 1.

In the rest of this paper, let Sh represent the set
of safe nodes with respect to distance h. For example,
consider a 4-dimensional hypercube network in which
each node is addressed as shown in Fig. 3 and the set
of the faulty nodes is {1, 4, 12, 13, 14}. Then following
equations hold:

R1 = S1 = {0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 15},
R2 = {2, 3, 6, 7, 8, 10, 11, 15},
S2 = {2, 3, 7, 8, 10, 11},
R3 = {0, 2, 3, 6, 7, 9, 10, 11, 15},
S3 = {0, 2, 3, 6, 9, 10, 11, 15}.

The node 15 is fully reachable with respect to distance
2 because each node (i.e. 3, 5, 6, 9, and 10) which is
nonfaulty and apart from 15 by Hamming distance 2 is
reachable from 15 via a path of length 2. However, it
is not a safe node with respect to distance 2. Similarly,
the node 7 is fully reachable with respect to distance 3
though it is not safe with respect to distance 3.

3.2 Algorithm FR

About Sh and Rh, the following theorem holds.

Theorem 4: For any distance h, Sh ⊂ Rh.
(Proof) The theorem is proved by induction on h. Let
n ∈ S1, then n is not a faulty node. Therefore, for any
nonfaulty node n′ for which H(n, n′) = 1 holds, that is,
for every nonfaulty neighbor node n′, n is reachable to it
immediately using the directly connected edge. Hence,
S1 ⊂ R1. Now, assume that Sh ⊂ Rh holds for ev-
ery h < k. Here, let n ∈ Sk then from Definition 7, the
node n must be adjacent to at least d−k+1 nodes which
are safe with respect to distance k−1 (see Fig. 4). This
means that the number of neighbor nodes which are not
safe with respect to distance k−1 is at most k−1. For

Fig. 3 An example of 4-cube with faulty nodes.
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Fig. 4 Relationship between node n(∈ Sk) and its neighbor
nodes.

any nonfaulty node n′ for which H(n, n′) = k holds,
consider the set D(n, n′) whose elements are neighbor
nodes of n and nearer to n′ than n. The number of
nodes included in D(n, n′) is k (|D(n, n′)| = k). There-
fore, at least one node of k nodes in D(n, n′) is safe
with respect to distance k − 1. From the hypothesis of
induction, Sk−1 ⊂ Rk−1. Then if we send a message
to the node, it is possible to reach the target node n′

through a path of length k. Hence, for any nonfaulty
node n′ for which H(n, n′) = k holds, n is reachable to
n′ using a path of length k and n ∈ Rk. From the above
Sk ⊂ Rk, and for any distance h, Sh ⊂ Rh holds. ✷

Generally, it is difficult to obtain N(n) ∩ Rh for
any node n, while Sh is easily detected because it can
be determined by exchanging information just between
neighbor nodes. By Theorem 4, Sh ⊂ Rh holds. Hence
we can use Sh as a set of safe nodes to send messages. If
we calculate S2, · · · , Sk in a preprocess, a new routing
algorithm FR is obtained by changing the comment line
(*· · ·*) of Fig. 2 with
else if l ≤ k+1 and ∃n ∈ D∩Sl−1 then nxt := n
(see Fig. 5).

As shown in the following Theorem 5, the algo-
rithm FR results in more nodes which can be used to
route safely than does the algorithm route.

Theorem 5: For any distance h, S ⊂ Sh.
(Proof) The theorem is proved by induction on h. S ⊂
S1 is trivial. If n ∈ S then the node n is adjacent to
at most one faulty node and n ∈ S2 from Definition 7.
Hence S ⊂ S2. Now, assume S ⊂ Sh holds for any
h < k. Here, let n ∈ S; then n is adjacent to at most
two non-safe nodes from Definition 3. Therefore, n is
adjacent to at least d−2 safe nodes (|N(n)∩S| ≥ d−2).
From the hypothesis of induction, S ⊂ Sk−1. Hence,
N(n)∩S ⊂ N(n)∩Sk−1 holds and this means that the
node n is adjacent to at least d−2 nodes which are safe
with respect to distance k − 1 (|N(n)∩ Sk−1| ≥ d− 2).
Now, d− 2 ≥ d− k + 1 because k ≥ 3. Then, the node
n is adjacent to at least d− k + 1 nodes which are safe
with respect to distance k−1. This means n ∈ Sk from
Definition 7, hence S ⊂ Sk. Therefore, for any distance
h, S ⊂ Sh holds. ✷

procedure FR(c, t)
begin

l := H(c,t); N := N(c); D := D(c,t);
if l = 0 then deliver the message to c and exit

else if ∃n ∈ D ∩ S then nxt := n
else if l ≤ k + 1 and ∃n ∈ D ∩ Sl−1 then

nxt := n
else if ∃n ∈ D ∩ Ū then nxt := n
else if ∃n ∈ D ∩ Ũ and (c ∈ Ũ or l ≤ 2) then

nxt := n
else if ∃n ∈ (N − D) ∩ S then nxt := n
else if ∃n ∈ (N − D) ∩ Ū then nxt:= n
else error(’unable to deliver’);

FR(nxt, t)
end

Fig. 5 Routing algorithm FR based on full reachability.

Fig. 6 A routing example by route and FR.

In the example shown in Fig. 6, since the source
node s is strongly unsafe, the algorithm route sends the
message to a single ordinary unsafe node n1 in D(s, t),
that is, the subset of neighbor nodes of s which are
closer to the target node t than the node s. However,
the nodes in D(n1, t) are all faulty and it must detour to
a safe node n3. In contrast, the algorithm FR finds that
the node n2 in D(s, t) which is judged strongly unsafe
in route is safe with respect to distance 2. Therefore,
it can construct a path shown by arrows by using in-
formation about full reachability based on Hamming
distance.
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procedure init(c, k)
begin

σc,1 := SAFE;

Detect N(c) ∩ S1;

for h := 2 to k do

begin

send σc,h−1 to N(c) ∩ S1;

for every n ∈ N(c) ∩ S1 do receive σn,h−1 from n;
Th−1 := {n|n∈N(c) ∩ S1, σn,h−1=SAFE}
if |Th−1| ≥ d − h+ 1 then σc,h := SAFE

else σc,h := UNSAFE

end

end

Fig. 7 Initialization procedure init for routing algorithm FR.

3.3 Initialization for FR

Next, we show an algorithm to accumulate in each non-
faulty node information about its neighbors in a hyper-
cube interconnection network which has faulty nodes.
We presume that every node has buffers, one for each
link between a neighbor node and itself and that con-
stant time is required for sending and receiving a mes-
sage. In addition, we make the assumption that the
detection of faulty neighbor nodes can be performed in
constant time.

Figure 7 shows the initialization procedure init
for node c in FR. A variable σn,h holds classification
information about a node n with respect to distance h.
A variable Th−1 represents a subset of neighbor nodes
of c which are safe with respect to h− 1, and the value
σc,h is determined according to its cardinality.

This procedure must be executed in addition to
the procedure of initialization for the algorithm route
whose time complexity is O(d2) [3]. But time complex-
ity for the procedure init is O(kd), it does not make
the whole time complexity worse.

4. An Algorithm Based on Classification of
Unsafe Nodes

4.1 Classification of Unsafe Nodes with Respect to
Distance

If we can assign k as equal to d − 1 in the algorithm
FR, it is not necessary to use the classification informa-
tion of safe nodes by Chiu and Wu for routing selec-
tion. Similarly, it is possible to route based only on
node classification with respect to Hamming distance
by classifying unsafe nodes with respect to distance.

Definition 8: (unsafe nodes with respect to distance)
A nonfaulty node n is unsafe with respect to (Ham-
ming) distance h if the node n is not safe with respect
to distance h.

That is, if the number of neighbor nodes of a non-
faulty node n which are faulty or unsafe with respect
to distance h−1 is greater than or equal to h, then the

node n is unsafe with respect to distance h.
In addition, to detect a subset of unsafe nodes with

respect to distance which gives guaranteed detours, we
introduce a definition below.

Definition 9: (strongly and ordinary unsafe nodes
with respect to distance)
For an unsafe node n with respect to distance h, con-
sider an arbitrary division of the neighbor nodes of n
into two disjoint subsets N1 and N2 which consist of h
and d − h nodes, respectively. The node n is ordinary
unsafe with respect to distance h if, for all such divi-
sions, the subset N1 includes a safe node with respect
to distance h − 1 or a safe node with respect to dis-
tance h+1 belongs to the subset N2. If a node n which
is unsafe with respect to distance h is not an ordinary
unsafe node with respect to distance h, it is a strongly
unsafe node with respect to distance h.

A node n which is ordinary unsafe with respect to
distance h has the following property for a target node
t apart from n by Hamming distance h(= H(n, t)): the
node n has a safe node with respect to distance h−1 in
D(n, t), the subset of neighbor nodes which are closer
to the target node than the node n, or it has a safe
node with respect to distance h + 1 in N(n) − D(n, t)
to detour.

4.2 Initialization for FR2

It is difficult to detect ordinary unsafe nodes with re-
spect to distance by using Definition 9 directly. Hence
we make use of the following theorem.

Theorem 6: For an unsafe node n with respect to
distance h, the node n is ordinary unsafe with respect
to distance h if and only if at least one of the following
conditions holds:

• There exists a node n′ among the neighbor nodes
of n which is safe with respect to distance h + 1
and h − 1.

• The number of safe nodes with respect to distance
h+1 among the neighbor nodes of n is greater than
or equal to h + 1.

(Proof) First comes the proof of sufficiency. Let a node
n be unsafe with respect to distance h. Now, let us
consider the case that there exists a node n′ among
the neighbor nodes of n which is safe with respect to
distance h + 1 and h − 1. In Definition 9, since n′

is a neighbor node of n, if n′ belongs to the subset
N1 then there exists a node in N1 which is safe with
respect to distance h−1; otherwise n′ belongs to N2 and
there exists a node in N2 which is safe with respect to
distance h+1. Next, consider the case that the number
of safe nodes with respect to distance h+ 1 among the
neighbor nodes of n is greater than or equal to h + 1.
Then, since |N1| = h, there exists a safe node in N2 with
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procedure init2(c)
begin

σc,1 := SAFE;

Detect N(c) ∩ S1;

for h := 2 to d do

begin

send σc,h−1 to N(c) ∩ S1;

for every n ∈ N(c) ∩ S1 do receive σn,h−1 from n;
Th−1 := {n|n∈N(c) ∩ S1, σn,h−1=SAFE};
if |Th−1| ≥ d − h+ 1 then σc,h := SAFE

else σc,h := S UNSAFE

end;

send σc,d to N(c) ∩ S1;

for every n ∈ N(c) ∩ S1 do receive σn,d from n;
Td := {n|n ∈ N(c) ∩ S1, σn,d = SAFE};
for h := 2 to d − 1 do

if σc,h = S UNSAFE then

if ∃n ∈ Th−1 ∩ Th+1 or |Th+1| ≥ h+ 1 then

σc,h := O UNSAFE;

end

Fig. 8 Initialization procedure init2 for routing algorithm
FR2.

respect to distance h + 1. Consequently, the node n is
proved to be ordinary unsafe with respect to distance
h in either case. Secondly, we prove the necessity. For
an ordinary unsafe node n with respect to distance h,
we assume that there is no node in neighbor nodes of n
which is safe with respect to distance h + 1 and h − 1,
and the number of safe nodes with respect to distance
h + 1 in neighbor nodes of n is less than or equal to
h. Then, we can divide N(n) into N1 and N2 where all
safe nodes with respect to distance h + 1 are included
in N1 and N2 includes all the safe nodes with respect
to distance h − 1 of neighbor nodes of n. Hence, n is
not ordinary unsafe with respect to distance h which is
a contradiction. The theorem is proved by the above
discussion. ✷

By using Theorem 6, the algorithm shown in Fig. 8
can classify the neighbor nodes of each nonfaulty node
c; where as similar to the initialization procedure for
the algorithm FR, we assume that each node has buffers,
each of which is situated at the link between its neigh-
bor node and itself; message sending and receiving are
performed in constant time; and faulty neighbor nodes
are detectable in constant time. A variable σn,h holds
the classification information of node n with respect to
distance h and a variable Th represents the subset of
neighbor nodes of c which are safe with respect to dis-
tance h. The value of σc,h is determined according to
the variable Th.

4.3 Algorithm FR2

In the rest of this paper, let Ūh and Ũh represent the
set of ordinary unsafe nodes with respect to distance
h and that of strongly unsafe nodes with respect to
distance h, respectively. Concerning the classification
above, Theorems 7 and 8 hold.

Fig. 9 Node classification with respect to distance.

procedure FR2(c, t)
begin

h := H(c,t); N := N(c); D := D(c,t);
if h = 0 then deliver the message to c and exit

else if ∃n ∈ D ∩ Sh−1 then nxt := n
else if ∃n ∈ D ∩ Ūh−1 then nxt := n

else if ∃n ∈ D ∩ Ũh−1 and (c ∈ Ũh or h ≤ 2) then

nxt := n
else if ∃n ∈ (N − D) ∩ Sh+1 then nxt:=n
else if ∃n ∈ (N − D) ∩ Ūh+1 then nxt:=n
else error(’unable to deliver’);

FR2(nxt, t)
end

Fig. 10 Algorithm FR2 based on classification of unsafe nodes.

Theorem 7: For any Hamming distance h, S ∪ Ū ⊂
Sh ∪ Ūh.
(Proof) Because S is a subset of Sh, it is sufficient to
show that the set Ū − Sh(the hatched part in Fig. 9) is
a subset of Ūh. Any node n which belongs to Ū −Sh is
included Ū . Hence n has a safe node (according to the
classification by Chiu and Wu) n′ in its neighbor nodes.
Therefore, n′ is safe with respect to distance h− 1 and
h + 1. From Theorem 6, the node n is ordinary unsafe
with respect to distance h. Consequently, Ū −Sh ⊂ Ūh.

✷

Theorem 8: For any distance h, Ũh ⊂ Ũ .
(Proof) It is obvious from Theorem 7. ✷

From Theorem 8, if a hypercube interconnection
network is not fully unsafe (by Definition 5), a strongly
unsafe node with respect to distance h has an ordinary
unsafe neighbor node. From this fact, we can construct
a new algorithm FR2 based on the classification of un-
safe nodes. See Fig. 10.

5. Evaluation

To verify the power of our algorithms FR and FR2, we
repeat the following procedure for all combinations of
addresses of faulty nodes and a target one. For the
algorithm FR, we adopted a best parameter value of
k = d − 1.

1. In a d-dimensional hypercube, set f faulty nodes.
2. Classify all nodes into faulty, safe, ordinary unsafe,

and strongly unsafe nodes. Moreover, calculate Sh,
Ūh and Ũh, (1 ≤ h ≤ d).
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Fig. 11 Improvement ratio by algorithm FR2.

3. Taking advantage of symmetry, fix the node 0 as
the source, and select a nonfaulty node which is
not the source and is reachable from the source
node as the target.

4. Call the procedures for route, FR, and FR2, then
count the number of unnecessary detours and fail-
ures of deliveries for each one.

Figure 11 shows the results. The horizontal axis
d/f represents pairs of the dimension d of the hyper-
cube interconnection network and the number of faulty
nodes f . Specifically, for any given d/f pair, it repre-
sents the ratio of the sum of the number of detours and
the number of failures in our algorithms FR and FR2, to
the similar sum obtained for route algorithm.

In every case, FR2 shows the best results and FR is
better than route. Focusing on the number of failures,
FR2 reduces it further than FR does. We believe this
is due to the new scheme based on the classification of
unsafe nodes with respect to distance.

Moreover, we compare our algorithms FR and FR2
with an algorithm RC by Chiu and Chen [4]. Their al-
gorithm uses the notion of routing capability which is
equivalent to our full reachability. Assume that the cur-
rent and target nodes are c and t, respectively. Then
the algorithm searches for a node to proceed or detour
to in D ∩ Sh−1, D ∩ Sh+1, (N − D) ∩ Sh+1, D ∩ Sh+3,
(N − D) ∩ Sh+3, · · · in this order where h = H(c, t),
N = N(c) and D = D(c, t). Though the directed ver-
sion of classification is applicable to all algorithms in-
cluding ours, it is ignored for simplicity. Simulation is
performed by following the procedure mentioned above
with one exception, namely, that the addresses of faulty
nodes and a target node are randomly generated one
million times. Figure 12 and Fig. 13 show the average
percentage of the shortest path routing and the aver-
age reachability of the algorithms in a 6-dimensional
hypercube, respectively. The reachability is the ratio
of messages which managed to reach the target nodes.

Fig. 12 Shortest path routing percentage in 6-cube.

Fig. 13 Reachability percentage in 6-cube.

In either case, results show that the algorithms FR1 and
FR2 are superior to RC. The reason of this, we believe,
is that RC uses only the routing capabilities while oth-
ers use the notion of unsafeness for a better speculative
routing which ensures reachability.

6. Conclusions

We first proposed a routing algorithm FR which is based
on full reachability and is an extension of the algorithm
by Chiu and Wu [3]. We further proposed another rout-
ing algorithm FR2 which does not make use of classifica-
tion information used in Chiu and Wu [3] by classifying
unsafe nodes with respect to the Hamming distance.

Evaluation of the algorithms shows that they can
detect communication paths which do not include any
faulty nodes and which were not found by conventional
algorithms route and RC. In addition, it is demon-
strated by computer simulation that FR and FR2 are
effective for low-dimensional hypercubes and give good
results.

In future, it is necessary to execute simulations
to assess the applicability of FR2 for high-dimensional
hypercube interconnection networks.
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